A model of platelet aggregation involving multiple interactions of thrombospondin-1, fibrinogen, and GPIIbIIIa receptor.
نویسندگان
چکیده
Thrombospondin-1 (TSP) may, after secretion from platelet alpha granules, participate in platelet aggregation, but its mode of action is poorly understood. We evaluated the capacity of TSP to form inter-platelet cross-bridges through its interaction with fibrinogen (Fg), using either Fg-coated beads or Fg bound to the activated GPIIbIIIa integrin (GPIIbIIIa*) immobilized on beads or on activated fixed platelets (AFP), i.e. in a system free of platelet signaling and secretion mechanisms. Aggregation at physiological shear rates (100-2000 s(-1)) was studied in a microcouette device and monitored by flow cytometry. Soluble TSP bound to and induced aggregation of Fg-coated beads dose-dependently, which could be blocked by the amino-terminal heparin-binding domain of TSP, TSP18. Soluble TSP did not bind to GPIIbIIIa*-coated beads or AFP, unless they were preincubated with Fg. The interaction of soluble TSP with Fg-GPIIbIIIa*-coated beads or Fg-AFP resulted in the formation of aggregates via Fg-TSP-Fg cross-bridges, as demonstrated in a system where direct cross-bridges mediated by GPIIbIIIa*-Fg on one particle and free GPIIbIIIa* on a second particle were blocked by the RGD mimetic Ro 44-9883. Soluble TSP increased the efficiency of Fg-mediated aggregation of AFP by 30-110% over all shear rates and GPIIbIIIa* occupancies evaluated. Surprisingly, TSP binding to Fg already bound to its GPIIbIIIa* receptor appears to block the ability of this occupied Fg to recognize another GPIIbIIIa* receptor, but this TSP can indeed cross-bridge to another Fg molecule on a second platelet. Finally, TSP-coated beads could directly coaggregate at shear rates from 100 to 2000 s(-1). Our studies provide a model for the contribution of secreted TSP in reinforcing inter-platelet interactions in flowing blood, through direct Fg-TSP-Fg and TSP-TSP cross-bridges.
منابع مشابه
Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa.
The concept of an infectious agent playing a role in cardiovascular disease is slowly gaining attention. Among several pathogens identified, the oral bacterium Streptococcus gordonii has been implicated as a plausible agent. Platelet adhesion and subsequent aggregation are critical events in the pathogenesis and dissemination of the infective process. Here we describe the identification and cha...
متن کاملP 143: The Effect of Platelet Activating Factor on Inflammatory Response in Multiple Sclerosis
Multiple sclerosis is an autoimmune disease of the central nervous system which its main characteristic is an inflammation and demyelination and subsequent, neural degeneration. Many studies have shown that inflammation causing neuronal demyelination. MS is the most common cause of chronic neurological disability in during youth which the prognosis is that can be death. Platelet activating fact...
متن کاملThrombospondin promotes platelet aggregation.
Thrombospondin (TSP), isolated from human platelets, promotes aggregation of both nonstimulated platelets and platelets stimulated with thrombin or ADP. The TSP-promoted aggregation is specific since a monoclonal antibody against TSP inhibits the effect of exogenously added TSP and inhibits thrombin-induced platelet aggregation in the absence of added TSP. Several lines of evidence suggest that...
متن کاملThrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling.
Platelet alpha-granules constitute the major rapidly releasable reservoir of thrombospondin-1 in higher animals. Although some fragments and peptides derived from thrombospondin-1 stimulate or inhibit platelet aggregation, its physiologic function in platelets has remained elusive. We now show that endogenous thrombospondin-1 is necessary for platelet aggregation in vitro in the presence of phy...
متن کاملThrombospondin-1 Stimulates Platelet Aggregation by Blocking the Anti- thrombotic Activity of Nitric Oxide/cGMP Signaling Running head: TSP1 blocks the anti-thrombotic activity of NO
2 Platelet α-granules constitute the major rapidly releasable reservoir of thrombospondin-1 in higher animals. Although some fragments and peptides derived from thrombospondin-1 stimulate or inhibit platelet aggregation, its physiological function in platelets has remained elusive. We now show that endogenous thrombospondin-1 is necessary for platelet aggregation in vitro in the presence of phy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 8 شماره
صفحات -
تاریخ انتشار 2001